





# **Low I**<sub>p</sub> **HHFW Heating Experiments**

#### **Gary Taylor**

D. Mueller, J.C Hosea, S. Gerhardt, C. Kessel, B.P. LeBlanc, C.K. Phillips, S. Zweben *PPPL* R. Maingi, P.M. Ryan *ORNL* R. Raman *U. Washington* 

> Wave-Particle Topical Science Group Meeting FY2010 NSTX Research Forum December 1, 2009

## HHFW Heating of Low I<sub>p</sub> Plasmas Since 2005 Show Promise, But Also Problems with Plasma Control

#### 2005: (XP-521)

- ➢ 60-85% bootstrap current in HHFW heated (k<sub>φ</sub> = -14 m<sup>-1</sup>) H-mode D<sub>2</sub> plasmas at I<sub>p</sub> = 250 kA  $250 \int e^{-250} e^{-25$
- Transiently produced
  - $V_{loop} \le 0$  and  $dI_{OH}/dt \approx 0$

#### 2007: (XP-731)

- Problem with rtEFIT control at I<sub>p</sub> = 250 kA, used 300 kA
- > Many trips with  $k_{\phi} = 14 \text{ m}^{-1}$



> Up to 2.7 MW of  $k_{\phi} = -8 \text{ m}^{-1}$  heating, produced transient H-mode

## 2008: (XP-817)

Li conditioning reduced edge density, improving HHFW core heating, even in CHI start-up plasmas with n<sub>e</sub>(0) ~ 4x10<sup>18</sup>m<sup>-3</sup>

# Propose two low I<sub>p</sub> HHFW experiments in WPI TSG that will contribute to R10-2 milestone in 2010:

- > (1) HHFW Heating of Low  $T_e(0)$ ,  $I_p$  Plasmas (XP-920)
- (2) Sustainment of HHFW-Driven 100% Non-Inductive H-Mode Plasmas

# (1) HHFW Heating of I<sub>p</sub> ~ 200 kA Plasmas (XP-920); Develop HHFW I<sub>p</sub> Ramp-Up Later in SFSU TSG

- Experimental Approach/Plan:
  - Setup D<sub>2</sub> plasma with I<sub>p</sub> = 500 kA, B<sub>T</sub> = 5.5 kG, and add k<sub>φ</sub> = -8 m<sup>-1</sup> RF power and to ~ 3 MW, while adjusting Li evaporation rate, gas injection rate and outer gap to optimize HHFW heating efficiency (5-10 shots)
  - ➢ Reduce I<sub>p</sub> in 100 kA steps to 300 kA, then ~ 50 kA steps below 300 kA while coupling RF (10 shots). Repeat with k<sub>φ</sub> = 14 + 18 m<sup>-1</sup> heating (10 shots)
  - > If  $I_p = 200$  kA RF heating successful reduce  $I_p$  in ~ 25 kA steps to as close to 150 kA as possible while maintaining outer gap ~ 5-10 cm (5-10 shots)
  - > Couple  $k_{\phi} = \pm 8 \text{ m}^{-1} \& k_{\phi} = 14 + 18 \text{ m}^{-1}$  power to ~ 3 MW (15 shots)
  - > Perform  $n_e$  scan with  $k_{\phi} = -8 \text{ m}^{-1}$  heating (5-10 shots)
  - If sufficient CD is observed, adjust RF pulse to start as soon as I<sub>p</sub> reaches flattop, then use open loop OH programming to provide no ohmic drive after I<sub>p</sub> reaches minimum value (< 200 kA at approximately 25 ms) (10 shots)</p>
- Request 2 run days (minimum useful runtime ~ 1 day)

# (2) Sustainment of HHFW-Driven 100% Non-Inductive H-Mode; Develop Later in ASC TSG

- Brief Description:
  - > Couple ~ 5 MW of HHFW power into an  $I_p$  ~ 300-400 kA plasma
  - Based on past experiments and modeling 5 MW should be sufficient power to drive plasma into a fully non-inductive H-mode
- Background:
  - > 60-85% bootstrap fraction already achieved with ~ 2.5 MW of  $k_{\phi}$  = 14 + 18 m<sup>-1</sup> RF power in an  $I_p$  = 250 kA plasma (XP-521)
  - New double end-fed antenna should be able to couple ~ 5 MW
  - LLD + LITER's should provide low edge density for better RF coupling

#### • Experimental Approach/Plan:

- Experiment should be preceded by XP-920
- > Setup 600 ms  $I_p$  flattop  $D_2$  plasma with  $I_p \sim 300-400$  kA,  $B_T = 5.5$  kG
- Add 5 MW of k<sub>o</sub> = -8 m<sup>-1</sup> and/or 14 + 18 m<sup>-1</sup> heating, adjusting Li evaporation, gas injection rate and outer gap to optimize HHFW heating to obtain L-H transition and H-mode sustainment
- Request 1 run day (minimum useful runtime ~ 0.5 days)